The Role of Immune System in Migraine Pathophysiology




Migraine disorders, Headache , Immune system, Inflammation


Migraine is a disease characterized by recurrent episodes of headache mediated by trigeminal activation and release of CGRP peptide. Additionally, there is a complex interaction with the immune system through neurogenic inflammation and neuroinflammation, with an imbalance between the pro-inflammatory response and the regulatory response. The innate immune system acts in migraine mainly through the increase of pro-inflammatory cytokines, notably IL-1β, whose production may occur in the cortex-meningeal complex due to spreading cortical depression or in the trigeminal ganglion sensitized by CGRP. Some evidence also suggests an effect of the adaptive immune system Th1 and mainly Th2, culminating in the activation of meningeal mast cells. On the other hand, regulatory T cells are quantitatively decreased in migraine, and there are fluctuations in the levels of IL-10, the main anti-inflammatory cytokine. There is evidence of the immune system's involvement in migraine; however, its effect is still poorly understood, requiring further investigation.


Download data is not yet available.


Stovner LJ, Nichols E, Steiner TJ, Abd-Allah F, Abdelalim A, Al-Raddadi RM, et al. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 2018;17(11):954-76.Doi 10.1016/s1474-4422(18)30322-3 DOI:

Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38(1):1-211.Doi 10.1177/0333102417738202 DOI:

Marmura MJ. Triggers, Protectors, and Predictors in Episodic Migraine. Current Pain and Headache Reports. 2018;22(12).Doi 10.1007/s11916-018-0734-0 DOI:

Schulte LH, Peng K-P. Current understanding of premonitory networks in migraine: A window to attack generation. Cephalalgia. 2019;39(13):1720-7.Doi 10.1177/0333102419883375 DOI:

May A, Burstein R. Hypothalamic regulation of headache and migraine. Cephalalgia. 2019;39(13):1710-9.Doi 10.1177/0333102419867280 DOI:

Fraser CL, Hepschke JL, Jenkins B, Prasad S. Migraine Aura: Pathophysiology, Mimics, and Treatment Options. Seminars in Neurology. 2019;39(06):739-48.Doi 10.1055/s-0039-1700525 DOI:

Charles A. The pathophysiology of migraine: implications for clinical management. The Lancet Neurology. 2018;17(2):174-82.Doi 10.1016/s1474-4422(17)30435-0 DOI:

Messlinger K, Russo AF. Current understanding of trigeminal ganglion structure and function in headache. Cephalalgia. 2018;39(13):1661-74.Doi 10.1177/0333102418786261 DOI:

Iyengar S, Johnson KW, Ossipov MH, Aurora SK. CGRP and the Trigeminal System in Migraine. Headache: The Journal of Head and Face Pain. 2019;59(5):659-81.Doi 10.1111/head.13529 DOI:

Vause CV, Durham PL. Calcitonin gene-related peptide differentially regulates gene and protein expression in trigeminal glia cells: Findings from array analysis. Neuroscience Letters. 2010;473(3):163-7.Doi 10.1016/j.neulet.2010.01.074 DOI:

De Corato A, Lisi L, Capuano A, Tringali G, Tramutola A, Navarra P, et al. Trigeminal satellite cells express functional calcitonin gene-related peptide receptors, whose activation enhances interleukin-1β pro-inflammatory effects. Journal of Neuroimmunology. 2011;237(1-2):39-46.Doi 10.1016/j.jneuroim.2011.05.013 DOI:

Erdener ŞE, Kaya Z, Dalkara T. Parenchymal neuroinflammatory signaling and dural neurogenic inflammation in migraine. The Journal of Headache and Pain. 2021;22(1).Doi 10.1186/s10194-021-01353-0 DOI:

Kursun O, Yemisci M, van den Maagdenberg AMJM, Karatas H. Migraine and neuroinflammation: the inflammasome perspective. The Journal of Headache and Pain. 2021;22(1).Doi 10.1186/s10194-021-01271-1 DOI:

Edvinsson L, Haanes KA, Warfvinge K. Does inflammation have a role in migraine? Nature Reviews Neurology. 2019;15(8):483-90.Doi 10.1038/s41582-019-0216-y DOI:

Salahi M, Parsa S, Nourmohammadi D, Razmkhah Z, Salimi O, Rahmani M, et al. Immunologic aspects of migraine: A review of literature. Frontiers in Neurology. 2022;13.Doi 10.3389/fneur.2022.944791 DOI:

Biscetti L, Cresta E, Cupini LM, Calabresi P, Sarchielli P. The putative role of neuroinflammation in the complex pathophysiology of migraine: From bench to bedside. Neurobiology of Disease. 2023;180.Doi 10.1016/j.nbd.2023.106072 DOI:

Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R. Activation of Meningeal Nociceptors by Cortical Spreading Depression: Implications for Migraine with Aura. Journal of Neuroscience. 2010;30(26):8807-14.Doi 10.1523/jneurosci.0511-10.2010 DOI:

Thuraiaiyah J, Erritzøe-Jervild M, Al-Khazali HM, Schytz HW, Younis S. The role of cytokines in migraine: A systematic review. Cephalalgia. 2022;42(14):1565-88.Doi 10.1177/03331024221118924 DOI:

Geng C, Yang Z, Xu P, Zhang H. Aberrations in peripheral inflammatory cytokine levels in migraine: A systematic review and meta-analysis. Journal of Clinical Neuroscience. 2022;98:213-8.Doi 10.1016/j.jocn.2022.02.026 DOI:

Jander S, Schroeter M, Peters O, Witte OW, Stoll G. Cortical Spreading Depression Induces Proinflammatory Cytokine Gene Expression in the Rat Brain. Journal of Cerebral Blood Flow & Metabolism. 2016;21(3):218-25.Doi 10.1097/00004647-200103000-00005 DOI:

Zhang X, Burstein R, Levy D. Local action of the proinflammatory cytokines IL-1β and IL-6 on intracranial meningeal nociceptors. Cephalalgia. 2011;32(1):66-72.Doi 10.1177/0333102411430848 DOI:

Yan J, Melemedjian OK, Price TJ, Dussor G. Sensitization of Dural Afferents Underlies Migraine-Related Behavior following Meningeal Application of Interleukin-6 (IL-6). Molecular Pain. 2012;8.Doi 10.1186/1744-8069-8-6 DOI:

Reuter U. Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain. 2001;124(12):2490-502.Doi 10.1093/brain/124.12.2490 DOI:

Chen L, Li X, Huang L, Wu Q, Chen L, Wan Q. Chemical stimulation of the intracranial dura activates NALP3 inflammasome in trigeminal ganglia neurons. Brain Research. 2014;1566:1-11.Doi 10.1016/j.brainres.2014.04.019 DOI:

Cuesta MC, Quintero L, Pons H, Suarez-Roca H. Substance P and calcitonin gene-related peptide increase IL-1β, IL-6 and TNFα secretion from human peripheral blood mononuclear cells. Neurochemistry International. 2002;40(4):301-6.Doi 10.1016/s0197-0186(01)00094-8 DOI:

Li J, Vause CV, Durham PL. Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Research. 2008;1196:22-32.Doi 10.1016/j.brainres.2007.12.028 DOI:

Bellamy J, Bowen EJ, Russo AF, Durham PL. Nitric oxide regulation of calcitonin gene‐related peptide gene expression in rat trigeminal ganglia neurons. European Journal of Neuroscience. 2006;23(8):2057-66.Doi 10.1111/j.1460-9568.2006.04742.x DOI:

Fidan I, Yüksel S, Ýmir T, İrkeç C, Aksakal FN. The importance of cytokines, chemokines and nitric oxide in pathophysiology of migraine. Journal of Neuroimmunology. 2006;171(1-2):184-8.Doi 10.1016/j.jneuroim.2005.10.005 DOI:

Capuano A, De Corato A, Lisi L, Tringali G, Navarra P, Russo CD. Proinflammatory-Activated Trigeminal Satellite Cells Promote Neuronal Sensitization: Relevance for Migraine Pathology. Molecular Pain. 2009;5.Doi 10.1186/1744-8069-5-43 DOI:

Bereswill S, Neeb L, Hellen P, Boehnke C, Hoffmann J, Schuh-Hofer S, et al. IL-1β Stimulates COX-2 Dependent PGE2 Synthesis and CGRP Release in Rat Trigeminal Ganglia Cells. PLoS ONE. 2011;6(3).Doi 10.1371/journal.pone.0017360 DOI:

Neeb L, Hellen P, Hoffmann J, Dirnagl U, Reuter U. Methylprednisolone blocks interleukin 1 beta induced calcitonin gene related peptide release in trigeminal ganglia cells. The Journal of Headache and Pain. 2016;17(1).Doi 10.1186/s10194-016-0609-x DOI:

Gong Q, Lin Y, Lu Z, Xiao Z. Microglia-Astrocyte Cross Talk through IL-18/IL-18R Signaling Modulates Migraine-like Behavior in Experimental Models of Migraine. Neuroscience. 2020;451:207-15.Doi 10.1016/j.neuroscience.2020.10.019 DOI:

Bullón P, Alcocer-Gómez E, Carrión AM, Marín-Aguilar F, Garrido-Maraver J, Román-Malo L, et al. AMPK Phosphorylation Modulates Pain by Activation of NLRP3 Inflammasome. Antioxidants & Redox Signaling. 2016;24(3):157-70.Doi 10.1089/ars.2014.6120 DOI:

Daigo E, Sakuma Y, Miyoshi K, Noguchi K, Kotani J. Increased expression of interleukin-18 in the trigeminal spinal subnucleus caudalis after inferior alveolar nerve injury in the rat. Neuroscience Letters. 2012;529(1):39-44.Doi 10.1016/j.neulet.2012.09.007 DOI:

Pilat D, Piotrowska A, Rojewska E, Jurga A, Ślusarczyk J, Makuch W, et al. Blockade of IL-18 signaling diminished neuropathic pain and enhanced the efficacy of morphine and buprenorphine. Molecular and Cellular Neuroscience. 2016;71:114-24.Doi 10.1016/j.mcn.2015.12.013 DOI:

Miyoshi K, Obata K, Kondo T, Okamura H, Noguchi K. Interleukin-18-Mediated Microglia/Astrocyte Interaction in the Spinal Cord Enhances Neuropathic Pain Processing after Nerve Injury. The Journal of Neuroscience. 2008;28(48):12775-87.Doi 10.1523/jneurosci.3512-08.2008 DOI:

Sarchielli P, Alberti A, Vaianella L, Pierguidi L, Floridi A, Mazzotta G, et al. Chemokine Levels in the Jugular Venous Blood of Migraine Without Aura Patients During Attacks. Headache: The Journal of Head and Face Pain. 2004;44(10):961-8.Doi 10.1111/j.1526-4610.2004.04189.x DOI:

Sarchielli P, Floridi A, Mancini ML, Rossi C, Coppola F, Baldi A, et al. NF-κB Activity and iNOS Expression in Monocytes from Internal Jugular Blood of Migraine Without Aura Patients During Attacks. Cephalalgia. 2016;26(9):1071-9.Doi 10.1111/j.1468-2982.2006.01164.x DOI:

Musubire AK, Cheema S, Ray JC, Hutton EJ, Matharu M. Cytokines in primary headache disorders: a systematic review and meta-analysis. The Journal of Headache and Pain. 2023;24(1).Doi 10.1186/s10194-023-01572-7 DOI:

Vedova CD, Cathcart S, Dohnalek A, Lee V, Hutchinson MR, Immink MA, et al. Peripheral Interleukin-1β Levels are Elevated in Chronic Tension-Type Headache Patients. Pain Research and Management. 2013;18(6):301-6.Doi 10.1155/2013/796161 DOI:

Dönder A, Cafer V, Yilmaz A, Aslanhan H, Arikanoğlu A. Investigation of serum vaspin, visfatin, chemerin and IL-18 levels in migraine patients. Arquivos de Neuro-Psiquiatria. 2021;79(9):789-94.Doi 10.1590/0004-282x-anp-2020-0425 DOI:

Stirparo G, Zicari A, Favilla M, Lipari M, Martelletti P. Linked Activation of Nitric Oxide Synthase and Cyclooxygenase in Peripheral Monocytes of Asymptomatic Migraine Without Aura Patients. Cephalalgia. 2016;20(2):100-6.Doi 10.1046/j.1468-2982.2000.00025.x DOI:

Michalak S, Kalinowska-Lyszczarz A, Wegrzyn D, Niezgoda A, Losy J, Osztynowicz K, et al. Increased Serum CD14 Level Is Associated with Depletion of TNF-α in Monocytes in Migraine Patients during Interictal Period. International Journal of Molecular Sciences. 2017;18(2).Doi 10.3390/ijms18020398 DOI:

Oliveira AB, Bachi ALL, Ribeiro RT, Mello MT, Tufik S, Peres MFP. Unbalanced plasma TNF-α and IL-12/IL-10 profile in women with migraine is associated with psychological and physiological outcomes. Journal of Neuroimmunology. 2017;313:138-44.Doi 10.1016/j.jneuroim.2017.09.008 DOI:

Oliveira Arão B, Bachi Andre Luis L, Ribeiro Reinaldo T, Mello Marco T, Vaisberg M, Peres Mario Fernando P. Exercise-Induced Change in Plasma IL-12p70 Is Linked to Migraine Prevention and Anxiolytic Effects in Treatment-Naïve Women: A Randomized Controlled Trial. Neuroimmunomodulation. 2017;24(6):293-9.Doi 10.1159/000487141 DOI:

Taheri M, Nicknafs F, Hesami O, Javadi A, Arsang-Jang S, Sayad A, et al. Differential Expression of Cytokine-Coding Genes among Migraine Patients with and without Aura and Normal Subjects. Journal of Molecular Neuroscience. 2020;71(6):1197-204.Doi 10.1007/s12031-020-01745-y DOI:

Marshall JS, McCurdy JD, Olynych T. Toll-Like Receptor-Mediated Activation of Mast Cells: Implications for Allergic Disease? International Archives of Allergy and Immunology. 2003;132(2):87-97.Doi 10.1159/000073709 DOI:

Conti P, D’Ovidio C, Conti C, Gallenga CE, Lauritano D, Caraffa A, et al. Progression in migraine: Role of mast cells and pro-inflammatory and anti-inflammatory cytokines. European Journal of Pharmacology. 2019;844:87-94.Doi 10.1016/j.ejphar.2018.12.004 DOI:

Ransohoff RM, Brown MA. Innate immunity in the central nervous system. Journal of Clinical Investigation. 2012;122(4):1164-71.Doi 10.1172/jci58644 DOI:

Hadjikhani N, Albrecht DS, Mainero C, Ichijo E, Ward N, Granziera C, et al. Extra‐Axial Inflammatory Signal in Parameninges in Migraine with Visual Aura. Annals of Neurology. 2020;87(6):939-49.Doi 10.1002/ana.25731 DOI:

Munno I, Centonze V, Marinaro M, Bassi A, Lacedra G, Causarano V, et al. Cytokines and Migraine: Increase of IL‐5 and IL‐4 Plasma Levels. Headache: The Journal of Head and Face Pain. 2003;38(6):465-7.Doi 10.1046/j.1526-4610.1998.3806465.x DOI:

Munno I, Marinaro M, Bassi A, Cassiano MA, Causarano V, Centonze V. Immunological Aspects in Migraine: Increase of IL‐10 Plasma Levels During Attack. Headache: The Journal of Head and Face Pain. 2008;41(8):764-7.Doi 10.1046/j.1526-4610.2001.01140.x DOI:

Ceylan M, Bayraktutan OF, Becel S, Atis Ö, Yalcin A, Kotan D. Serum levels of pentraxin-3 and other inflammatory biomarkers in migraine: Association with migraine characteristics. Cephalalgia. 2015;36(6):518-25.Doi 10.1177/0333102415598757 DOI:

Duarte H, Teixeira AL, Rocha NP, Domingues RB. Increased interictal serum levels of CXCL8/IL-8 and CCL3/MIP-1α in migraine. Neurological Sciences. 2014;36(2):203-8.Doi 10.1007/s10072-014-1931-1 DOI:

Faraji F, Shojapour M, Farahani I, Ganji A, Mosayebi G. Reduced regulatory T lymphocytes in migraine patients. Neurological Research. 2021;43(8):677-82.Doi 10.1080/01616412.2021.1915077 DOI:

Arumugam M, Parthasarathy V. Reduction of CD4+CD25+ regulatory T-cells in migraine: Is migraine an autoimmune disorder? Journal of Neuroimmunology. 2016;290:54-9.Doi 10.1016/j.jneuroim.2015.11.015 DOI:

Ishizaki K, Takeshima T, Fukuhara Y, Araki H, Nakaso K, Kusumi M, et al. Increased Plasma Transforming Growth Factor‐β1 in Migraine. Headache: The Journal of Head and Face Pain. 2005;45(9):1224-8.Doi 10.1111/j.1526-4610.2005.00246.x DOI:

Ashina M, Buse DC, Ashina H, Pozo-Rosich P, Peres MFP, Lee MJ, et al. Migraine: integrated approaches to clinical management and emerging treatments. The Lancet. 2021;397(10283):1505-18.Doi 10.1016/s0140-6736(20)32342-4 DOI:

Sprenger T, Viana M, Tassorelli C. Current Prophylactic Medications for Migraine and Their Potential Mechanisms of Action. Neurotherapeutics. 2018;15(2):313-23.Doi 10.1007/s13311-018-0621-8 DOI:

Hirfanoglu T, Serdaroglu A, Gulbahar O, Cansu A. Prophylactic Drugs and Cytokine and Leptin Levels in Children With Migraine. Pediatric Neurology. 2009;41(4):281-7.Doi 10.1016/j.pediatrneurol.2009.04.019 DOI:

Do TP, Hvedstrup J, Schytz HW. Botulinum toxin: A review of the mode of action in migraine. Acta Neurologica Scandinavica. 2018;137(5):442-51.Doi 10.1111/ane.12906 DOI:

Marmura MJ, Silberstein SD, Schwedt TJ. The Acute Treatment of Migraine in Adults: The American Headache Society Evidence Assessment of Migraine Pharmacotherapies. Headache: The Journal of Head and Face Pain. 2015;55(1):3-20.Doi 10.1111/head.12499 DOI:

Levin M, Silberstein SD, Gilbert R, Lucas S, Munsie L, Garrelts A, et al. Basic Considerations for the Use of Monoclonal Antibodies in Migraine. Headache: The Journal of Head and Face Pain. 2018;58(10):1689-96.Doi 10.1111/head.13439 DOI:

Abbas AK, Pillai S, Lichtman AH. Imunologia celular e molecular. 9ª ed. Rio de Janeiro: Guanabara Koogan; 2019.




How to Cite

Silva AV da, Bello VA, Frederico RCP, Oliveira CEC de, Antonucci AT, Reiche EMV, Simão ANC. The Role of Immune System in Migraine Pathophysiology. Headache Med [Internet]. 2024 Jun. 14 [cited 2024 Jul. 14];15(2):54-63. Available from:




Most read articles by the same author(s)

1 2 > >>